

Symmetry quantification and segmentation in STEM imaging through Zernike moments

Jiadong Dan ¹ 🗹 Cheng Zhang ² N. Duane Loh ¹

¹National University of Singapore

²City University of Hong Kong

Background: Symmetry Quantification in STEM

We present a method using Zernike moments^[1] for quantifying **rotational** and **reflectional symmetries** in scanning transmission electron microscopy (STEM) images^[2], aimed at enhancing atomic-scale structural analysis. This technique is resilient to common imaging noise, making it suitable for low-dose imaging and identifying quantum defects. We demonstrate its utility in unsupervised segmentation of polytypes in twisted bilayer TaS₂, enabling precise differentiation of structural phases and monitoring transitions induced by electron beam effects.

Challenges:

- **Noise Resilience:** Ensuring effectiveness against diverse imaging noise, particularly in low-dose conditions.
- **Scalability:** Adapting the method for large datasets or complex structures while maintaining efficiency.

Contributions:

- **Symmetry Quantification:** Novel method for quantifying symmetries in STEM images, improving structural analysis.
- Segmentation Accuracy: Accurate segmentation of polytypes in

Reflectional symmetry score, S_R

Biolmaging Sciences

Figure 3. Illustration of reflectional symmetry score S_R . (a) Original HAADF-STEM image patch (P_0) and its Zernike feature vector \boldsymbol{v} . (b) Reflected patch (P'_{θ}) and its Zernike vector \boldsymbol{u}' . (c) Similarity score $s'(\theta)$ from dot product of \boldsymbol{v} and \boldsymbol{u}' . (d) Reflectional curve $s'(\theta)$ for continuous angles θ . (e) Reflectional score S_R is the maximum value of $s'(\theta)$. (f) Local patches via sliding window technique. (g) First 66 Zernike moments for each patch. (h) Calculation of the reflectional curve $s'(\theta)$. (i) Visualization of reflection curve. (j) Maximum of $s'(\theta)$ defines S_R . (Scale bar: 1 nm)

twisted bilayer TaS₂, offering insights into structural phases and their transitions.

Rotational and reflectional symmetry maps

Figure 1. Representation of image patches as Zernike moments. (a) depicts the approximation of an image patch (left) as a linear combination of Zernike polynomials Z_n^m with coefficient A_n^m , which is called Zernike moment. Zernike moments can be calculated via dot product, as shown from (b) to (d).

N-fold rotational symmetry score, S_N

Figure 4. Rotational and reflectional symmetry maps of an experimental monolayer $MoSe_2$ HAADF image. (a) depicts the experimental HAADF-STEM image of a monolayer $MoSe_2$ with defects and contamination (upper left). (b)–(d) 3-fold, 6-fold, and reflectional symmetry maps calculated from the experimental image in panel a. (scale bar: 0.5 nm)

Segmentation in twisted bilayer TaS₂

Figure 2. Illustration of *N*-fold rotational symmetry score S_N . (a) Original HAADF-STEM image patch (P_0) and its Zernike feature vector \boldsymbol{v} . (b) Rotated patch (P_{θ}) and corresponding Zernike vector \boldsymbol{u} . (c) Similarity score $s(\theta)$ from dot product of \boldsymbol{v} and \boldsymbol{u} . (d) Series of similarity scores for discrete rotation angles $\boldsymbol{\Theta}$. (e) Mean similarity score defines S_N . (f) Local patches via sliding window technique. (g) First 66 Zernike moments for each patch. (h) Conversion of Zernike moments to single index format. (i) Squaring Zernike features. (j) S_N as a linear combination of quadratic terms with coefficients w_{iN} . (Scale bar: 1 nm)

Figure 5. Reflectional symmetry maps delineate phases in twisted bilayer TaS₂. (a) Experimental HAADF-STEM image and FFT (power spectrum) of twisted bilayer TaS₂. (b) Multislice simulation images of α -, β -, and γ -TaS₂ stacking phases. (c) Atomic structures of phases from panel b. (d) 2D PCA layout of local FFT patterns from reflectional symmetry maps in panel e. (e) Reflectional symmetry map of HAADF-STEM images across time series. (f) Phase segmentation based on reflectional symmetry maps in panel e. (g) Density plots of phases in 2D PCA space, with the same principal components as in panel d. (Scale bar: 4 nm)

Dan, J. et al., Science Advances 8 (2022), doi:10.1126/sciadv.abk1005
Dan, J. et al., Chinese Physics B (2024), doi:10.1088/1674-1056/ad51f4
GitHub repository - motif-learn: https://github.com/jiadongdan/motif-learn

https://jiadongdan.github.io/

NUS FoS 95th Anniversary Symposium

∑ jiadong.dan@u.nus.edu