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Introduction

Lorem ipsum dolor sit amet, ea mei dicant dolore soleat, nihil facete molestie
ut his. No fugit eligendi sapientem sit. Quem vituperatoribus te pro, no nec
putent noluisse apeirian. Corpora convenire vis in, usu iuvaret dolorum no.
Quo id nonumy omnium accusata, natum debet aliquam quo ne. Saepe
fabellas recusabo et sit.
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Introduction

A continuing challenge in atomic resolution microscopy is to identify
significant structural motifs and their assembly rules in synthesized materials
with limited observations1. Here we propose and validate a simple and
effective hybrid generative model capable of predicting unseen domain
boundaries in a potassium sodium niobate film from only a small number of
observations, without expensive first-principles calculations or atomistic
simulations of domain growth2. Our results demonstrate that complicated
domain boundary structures can arise from simple interpretable local rules,
played out probabilistically. We also found new significant tileable boundary
motifs and evidence that our system creates domain boundaries with the
highest entropy. More broadly, our work shows that simple yet interpretable
machine learning models can help us describe and understand the nature
and origin of disorder in complex materials, thus improving functional
materials design.

Key Challenges

Conclusions
We show how from a handful of simple rules, arbitrarily complex domain boundaries can emerge in potassium-sodium niobate piezoelectric films. We capture these rules with an
interpretable, probabilistic, generative model. Our model is in stark contrast with opaque and complex generative machine models (e.g., Generative Adversarial Networks, GANs) that
require a huge amount of data to train, or models that require expensive first-principles calculations. Interpretable, generative models like ours can make sense of this randomness
beyond what is practically observable, and have the potential to catalyze new directions for a common language to understand complex disordered materials3,4.

Fig. 3 Model evaluation and validation. (A) The frequency distribution of thirty-two 2-motif states. This distribution shows three plateaus,
where above each plateau we show its characteristic 2-motif (up to isometries). (B) The radial distribution function of all 1-motifs from
experiments. (C) The radial distribution function of all 1-motifs from synthetic samples drawn using our hybrid model. (D) Comparison of
end-to-end distance, Rn (exemplified by inset), as a function of motif path length N in different cases. (E) Fractal dimension of the domain
boundary assemblies from the experiments (gray circles) and synthetic samples (blue and red lines). Both experiments and simulations
show a power-law scaling with a fractal dimension of ~1.2.

A Generative model

Fig. 1 How the constrained k-Motif hierarchy leads to a probabilistic generative model. (A) The six dominant 1-motifs identified and
averaged from ADF-STEM images. There are 4 orientations for triangular 1-motifs (top) and two orientations for hexagonal 1-motifs (bottom).
(B) The 32 unique observed 2-motifs that can be formed by the six 1-motifs. Based on Euclidean isometry (rigid transformation), they can be
divided into three groups: 0-7, 8-23, and 24-31. (C) The transition matrix is estimated from our experimental data, and Pij is the probability of
2-motif i connecting to 2-motif j, where 0≤i≤31 and 0≤j≤31. (D) A collection of synthetic domain boundary samples generated from our model.
From left to right, it shows a hierarchical structure of forming random complex domain boundaries from low-level constrained structural motifs.

Fig. 2 Generating coarse-grained domain boundaries using a random nucleation model. (A) Nucleation sites of two types of translation
domains (i.e., I, II) are randomly distributed across the substrate. Blue dots belong to the lattice from type I and orange dots are from type II.
(B) Voronoi tessellation of nucleation sites in panel (A); solid edges are the coarse-grained TDBs between different domain types while
dashed edges are those between the same type. (C) We dress the coarse-grained TDBs in panel (B) with a possible arrangement of I, II
translation domains. Here the edges in the latter are replaced by k-motifs generated from the Markovian Transition matrix.

A Random nucleation model
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Fig. 4 Significant tileable long sequences of k-motifs. (A) Number of occurrences of tileable k-motifs that are statistically
significant in Fig. 1A. Besides a simple chain of triangle-only motifs (blue dashed boxes), we observed a significant number of
previously neglected longer sequences that contain hexagonal motifs (green or orange dashed boxes). (B-D) HAADF-STEM images
showing single examples of the most frequently occurring, tileable, longer sequence motifs. (E-F) Multislice simulations of structures
that match those in b-d respectively. (H-J) Atomic models of regions in (B-D) respectively.

Significant tileable long motifs at domain boundaries The system maximizes the configurational entropy of 
domain boundaries

Fig. 5 Estimating configurational entropy of domain boundaries. (A, B) Two boundary segments that begin and end at
equivalent fixed-end positions (red circles). Both domain boundaries have 9 triangular motifs and 6 hexagonal motifs. (C) The
average number of configurational microstates of boundary segments, 𝛺𝛺(𝑁𝑁,𝑅𝑅) , increases with the segments’ path length as a power
law, shown for different values of the free parameter d in the reduced transition matrix. (D) The system maximizes the power law
exponent 𝛼𝛼 when the free parameter 𝑑𝑑 ≈ 0.6 (dark gray circle), which was observed experimentally (gray dash line).

Fig. 6 The ideal generative model reduced by the isometries of 3-motifs. The transition matrix that encodes the local rules is sparse
since composing 2-motifs is not arbitrary. For example, panel (A) shows 2-motifs indexed by 8 and 0 can combine to form an allowed 3-
motif, while panel (B) illustrates the combination of 2-motifs indexed by 8 and 1 is prohibited. In total, there are 88 permissible 3-motifs,
which means the transition matrix has 88 valid inputs. These 88 permissible 3-motifs can be further classified into 11 classes because
rotation and reflection are isometries. (C) 11 Unique color blocks in the ideal TM mark the resultant 3-motifs overlaid on top. (D) In terms
of model parametrization, the ideal system is fully determined by {a, b, c, k, d, f, g}.

Reduced by isometries, the steady-state distribution of 2-motifs should take the following form:
𝜋𝜋 = [𝑥𝑥, 𝑥𝑥,⋯ , 𝑥𝑥,𝑦𝑦,𝑦𝑦,⋯ , 𝑦𝑦, 𝑧𝑧, 𝑧𝑧,⋯ , 𝑧𝑧 ].

There are 8 consecutive x, 16 consecutive y, and 8 consecutive z, therefore 𝜋𝜋 is a row vector of a length 32. If the transition 
probability is P, then the following relation holds,

𝑷𝑷𝑷𝑷 = 𝝅𝝅.

We can obtain a system of linear equations as follow,

𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑓𝑓 = 𝑥𝑥,
𝑏𝑏𝑏𝑏 + (1 − 𝑐𝑐 − 𝑘𝑘)𝑦𝑦 + 𝑔𝑔𝑔𝑔 = 𝑦𝑦,

8𝑥𝑥 + 16𝑦𝑦 + 8𝑧𝑧 = 1,
𝑦𝑦 1 − 𝑑𝑑 + 𝑦𝑦𝑦𝑦 = 𝑦𝑦,

(1 − 𝑎𝑎 − 𝑏𝑏)𝑥𝑥 + 𝑘𝑘𝑘𝑘 + (1 − 𝑓𝑓 − 𝑔𝑔)𝑧𝑧 = 𝑧𝑧.

By solving this linear equation system, we can obtain x, y and z.

𝑥𝑥 =
𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑓𝑓

8(−𝑎𝑎𝑎𝑎 − 2𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 + 2𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐 + 𝑐𝑐 + 𝑓𝑓𝑓𝑓 + 2𝑔𝑔 + 𝑘𝑘)

𝑦𝑦 =
−𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑔𝑔

8(−𝑎𝑎𝑎𝑎 − 2𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 + 2𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐 + 𝑐𝑐 + 𝑓𝑓𝑓𝑓 + 2𝑔𝑔 + 𝑘𝑘)

𝑧𝑧 =
−𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 + 𝑐𝑐 + 𝑘𝑘

8(−𝑎𝑎𝑎𝑎 − 2𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 + 2𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐 + 𝑐𝑐 + 𝑓𝑓𝑓𝑓 + 2𝑔𝑔 + 𝑘𝑘)

From our observations, k=0, g=0, and f=1, they can further simplify to forms as follow,

𝑥𝑥 = 𝑐𝑐
16𝑏𝑏+16𝑐𝑐−8𝑎𝑎𝑎𝑎−8𝑏𝑏𝑏𝑏

,

𝑦𝑦 = 𝑏𝑏
16𝑏𝑏+16𝑐𝑐−8𝑎𝑎𝑎𝑎−8𝑏𝑏𝑏𝑏

,

𝑧𝑧 = 𝑐𝑐(1−𝑎𝑎−𝑏𝑏)
16𝑏𝑏+16𝑐𝑐−8𝑎𝑎𝑎𝑎−8𝑏𝑏𝑏𝑏

.
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